Melatonin suppresses autophagy in type 2 diabetic osteoporosis

نویسندگان

  • Wei-Lin Zhang
  • Hong-Zheng Meng
  • Rui-Fei Yang
  • Mao-Wei Yang
  • Guang-Hong Sun
  • Jun-Hua Liu
  • Peng-Xu Shi
  • Fei Liu
  • Bo Yang
چکیده

Type 2 diabetes mellitus is often complicated by osteoporosis, a process which may involve osteoblast autophagy. As melatonin suppresses autophagy under certain conditions, we its investigated the effects on bone autophagy during diabetes. We first assessed different body parameters in a diabetic rat model treated with various concentrations of melatonin. Dynamic biomechanicalmeasurements, bone organization hard slice dyeing and micro-CT were used to observe the rat bone microstructure, and immunohistochemistry was used to determine levels of autophagy biomarkers. We also performed in vitro experiments on human fetal osteoblastic (hFOB1.19) cells cultured with high glucose, different concentrations of melatonin, and ERK pathway inhibitors. And we used Western blotting and immunofluorescence to measure the extent of osteogenesis and autophagy. We found that melatonin improved the bone microstructure in our rat diabetes model and reduced the level of autophagy(50 mg/kg was better than 100 mg/kg). Melatonin also enhanced osteogenesis and suppressed autophagy in osteoblasts cultured at high glucose levels (10 μM was better than 1 mM). This suggests melatonin may reduce the level of autophagy in osteoblasts and delay diabetes-induced osteoporosis by inhibiting the ERK signaling pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Melatonin Suppresses Autophagy Induced by Clinostat in Preosteoblast MC3T3-E1 Cells

Microgravity exposure can cause cardiovascular and immune disorders, muscle atrophy, osteoporosis, and loss of blood and plasma volume. A clinostat device is an effective ground-based tool for simulating microgravity. This study investigated how melatonin suppresses autophagy caused by simulated microgravity in preosteoblast MC3T3-E1 cells. In preosteoblast MC3T3-E1 cells, clinostat rotation in...

متن کامل

HIGH INTENSITY INTERVAL TRAINING INHIBITS AUTOPHAGY IN THE HEART TISSUE OF TYPE 2 DIABETIC RATS BY DECREASING THE CONTENT OF FOXO3A AND BECLIN-1 PROTEINS

Background: Diabetic cardiomyopathy is a complication type 2 diabetes mellitus that can lead to cardiac muscle autophagy through the proteins FOXO3a and Beclin-1. Therefore, the aim of this study is to investigate the effect of 8 weeks High intensity interval training (HIIT) on the content of FOXO3a and Beclin-1 proteins in heart muscle tissue of Sprague-Dawley rats with type 2 diabetic rats. ...

متن کامل

Osteoporosis and Osteoporotic Fractures in Postmenopausal Women with Type 2 Diabetes Compared with Non-Diabetic Cases

Objective: Correlation of osteoporosis (OP) with type 2diabetes mellitus (DM) , is not as clear as type 1 DM. The purpose of this study was to compare the frequency of OP and osteoporotic fractures in post- menopausal women with and without type 2 DM in Sari, Iran. Materials and Methods: Eighty post-menopausal women with type 2 DM and 80 non-diabetic controls enrolled in this study. Bone mine...

متن کامل

The downregulation of ATG4B mediated by microRNA-34a/34c-5p suppresses rapamycin-induced autophagy

Objective(s): Autophagy-related 4B (ATG4B) plays an important role in the process of autophagy induction. However, the molecular events that govern the expression of ATG4B in this process are not well known. Materials and Methods: Human ATG4B 3'-UTR region (1377 nt) containing miR-34a/miR-34c-5p binding site was amplified by PCR. Luciferase assay was used to assess the activity of reporter gene...

متن کامل

Protein kinase C-alpha suppresses autophagy and induces neural tube defects via miR-129-2 in diabetic pregnancy

Gene deletion-induced autophagy deficiency leads to neural tube defects (NTDs), similar to those in diabetic pregnancy. Here we report the key autophagy regulators modulated by diabetes in the murine developing neuroepithelium. Diabetes predominantly leads to exencephaly, induces neuroepithelial cell apoptosis and suppresses autophagy in the forebrain and midbrain of NTD embryos. Deleting the P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016